A CONVENIENT NEW SYNTHESIS OF α -FLUOROCARBONYL COMPOUNDS

Albert J. Fry* and Yoelit Migron Hall-Atwater Laboratories of Chemistry Wesleyan University, Middletown, Connecticut 06457, U.S.A.

Abstract

The reaction between tertiary a-bromo ketones or aldehydes and silver tetrafluoroborate in ether affords a-fluorocarbonyl compounds. Neighboring group participation by the carbonyl oxygen is proposed to account for the products and by-products.

Published methods¹ for the synthesis of a-fluoro ketones or aldehydes (1) suffer from the disadvantages of requiring several steps and/or inconvenient reagents. Prompted by a recent report by Rosen and Menahem* **concerning this** problem we describe herein a convenient synthesis of a-fluorocarbonyl compounds, involving simply reaction of the corresponding a-bromo compound with silver tetrafluoroborate in ether (eq. 1). The reaction is mild and uses readily

$$
R_1
$$

$$
R_2
$$

$$
R_3
$$

$$
R_2
$$

$$
R_3
$$

$$
R_2
$$

$$
R_3
$$

$$
R_4
$$

$$
R_5
$$

$$
R_6
$$

$$
R_7
$$

$$
R_8
$$

$$
R_9
$$

available materials. On the other hand, it is not applicable to primary $(R_1 = R_2 = H)$ or chloro ketones (Table I). The observed dependence upon the degree of α -alkyl substitution permits selective exchange by one bromine of an unsymmetrical α,α' -dibromo ketone (entry 6, Table I). The only by-products in the reactions proceeding to α -fluoro ketones are the corresponding α , β -unsaturated ketones (3). Reactions carried out in nucleophilic solvents (CH₂OH or CH₂CO₂H) afford the corresponding α -methoxy or α -acetoxy ketones.

The fact that tertiary α -bromo ketones react, while primary bromo ketones do not, indicates the silver ion-assisted reaction is more accurately described as an ionization than as an S_{N2} process (which would proceed more rapidly with primary bromo ketones). Because of the presumed difficulty of generating a positive charge adjacent to a carbonyl group, we believe that the reaction involves neighboring group participation by the carbonyl oxygen, i.e.,

Table I. Reaction of α -Bromocarbonyl Compounds with Silver Tetrafluoroborate α

Entry	Halide	Solvent	Products ⁸
ı	$\text{CH}_3\text{CO}^{\text{C}}_{\text{D}}\text{(CH}_3)_{2}$ Br	Et ₂ O	$CH_3CO_1^\circ$ (CH ₃) ₂ , ^{1b} 87%
			CH_3COC (CH ₃) = CH ₂ , ⁹ 10%
2	(CH_3) ₂ CHCOC (CH_3) ₂ $(\underline{11})$ ¹⁰	E_{2}^{t}	(CH_3) ₂ CHCOC ₁ (CH ₃) ₂ (12) ¹ 72 ⁸
			(CH_3) ₂ CHCOC $(CH_3) = CH_2 (\underline{13})$, ¹² 178 ^b
3	$BrcH_2COC (CH_3)_2$ ¹³	Et_{2} O	BrCH ₂ COC ₂ (CH ₃) ₂ , ¹¹ 87%
			BrCH ₂ COC (CH ₃) = CH ₂ , ¹¹ 9% ^C
	(CH_3) ₂ CCOC(CH ₃) ₂ Br Br	E_{t_2} o Ó	(CH_3) ₂ CCOC(CH ₃) ₂ , ¹¹ 30 [§]
			(CH_3) ₂ CCCC $(CH_3) = CH_2$, ¹¹ 60%
			(CH_3) ₂ CCOC(CH ₃) ₂ , ¹¹ trace
5	$\frac{\text{(CH}_3)}{\text{Br}}^2$ $\frac{\text{C}}{\text{Br}}$	Et ₂ O	(CH_3) ₂ CCHO, ¹ <i>b</i> 70%
			(CH_3) ₂ CHCO ₂ H, 15%
6	$\overline{\pi}$	CH ₃ OH	(CH_3) ₂ CHCOC _{(CH₃)₂,¹⁰ 50%}
			$\frac{13}{2}$, $124d$
7	$\overline{11}$	AcOH	12, 42
			213 13, $\frac{\text{(CH}_3)}{\text{OAC}}$ (CH ₃) ₂ , ¹⁵ 25% ^e
8	$\overline{\mathbf{4}}$	$\rm{CH_{3}OH}$	(CH ₃) ₂ CHCO ₂ CH ₃ , 40% (CH ₃) ₂ CCH (OCH ₃) ₂ , ¹⁶ 40%
			OCH ₃
			(CH_3) ₂ CCH (OCH ₃) ₂ , 20%
9	(CH_3) ₃ CCOCH ₂ Br ¹⁷	Et_{2} O	No reaction
10	$CH_3CO_1^\circ$ (CH ₃) ₂ ¹⁸	Et_2O	No reaction
$11\,$	(CH_3) ₂ CCHO ¹⁹	Et ₂ O	No reaction

 u The ratio of halide to AgBF₄ was 1:1 except where noted. Several reactions afforded some starting material; yields are uncorrected for this. ^b 4% starting material. ^C 2% starting material. a % starting material. c 8% starting material and 4% α -hydroxyketone also found. 6 2:1 ratio of AgBF :bromide.

rather than formation of a free a-ketocarbonium ion. This mechanism is further supported by the observed by-products, e.g., unsaturated ketones 3:

and substances <u>7</u>-10, formed from bromoaldehyde <u>4</u> in methanol:

(Compound 10 could arise by other routes, e.g., attack by methanol at the tetrahedral carbon **of 5, with subsequent conversion of the resulting aldehyde to lo.) Epoxy ether 5 has previous- ly been shown to afford 2 by reaction with methanol.3 Cyclic oxonium ions have previously been** invoked in the reactions of α -haloketones with AgSbF₅,⁴ substitution on α -haloketones through **oxirane mechanisms has been proposed,' and rearrangements of a-substituted oxiranes in acidic media are also well-known.6 We have considered the possibility that ketenes are intermediates** in the formation of 7 and 8, but are inclined to discount this possibility, since no diketenes **or derived products are observed. The conversion of 2 to a-substituted carbonyl compounds** might occur directly by attack at the a-carbon of species 2 (an S_N2-like process) (path A) or by attack at the carbonyl carbon of 2 to form intermediates similiar to 6, which subsequently

rearrange (path B). Although route B appears attractive in view of the apparent involvement of oxirane intermediates in the case of bromoaldehyde 4 (formation of 7-10) and literature **precedents, we cannot exclude the simpler route A.**

Isolation of α -fluoroketone 12 in acetic acid (run 7) but not in methanol is interesting. **It suggests that substitution in the less polar and less nucleophilic solvent acetic acid (and presumably also in ether) involves capture of fluoride ion in a tight ion pair. This is not unreasonable: even with assistance by silver ion and presumably also by the neighboring car**bonyl group, ionization to 2 must be a marginal process, as shown by the facts that (a) re**placement of bromine by chlorine causes the reaction to fail completely (runs 10 and 11) even though bromine is only 25-50 times better than chlorine as a leaving group,' and (b) primary a-bromo ketones also fail to react (runs 3 and 9).**

Experimental. Run no. 1 is representative. 1.65 g (0.01 mol) of 2-bromo-2-methyl-3-butanone and 1.947 g (0.01 mol) of AgBF were allowed to react overnight at room temperature in 70 ml of dry ether. After filtration of silver bromide , washing of the filtrate with water, drying (MgSO,), **and careful removal of the solvent (Vigreux column), the residual liquid was separated** by vpc (5% DEGS on Chromosorb P, 2.2 m x 6 mm column, 55°C); yields were determined by vpc. The **products are 2-fluoro-2-methyl-3-butanone'b (87.5%) and 2-methyl-l-butenone-3' (12.5%).**

Acknowledgments. Financial support by the National Science Foundation is gratefully acknowledged. High resolution mass spectra were measured at the NIH-sponsored Mass Spectrometry Facility at the Massachusetts Institute of Technology.

REFERENCES

A. (a) D. J. Costa, N. E. Boutin, and J. G. Reiss, Tetrahedron, 30, 3974 (1974); (b) J. Cantacuzene and D. Ricard, Bull. Soc. Chem. Fr., 34, 1587 (1967); (c) M. Schlosser and G. Heinz, **Chem. Ber., 102, 1944 (1964); (d) P. Tannhauser, R. J. Pratt, and E. V. Jensen, J. Am. Chem.** Soc., 78, 2658 (1956). <u>2</u>. S. Rozen and Y. Menahem, Tetrahedron Letters, 725 (1979). **3.** C. L. **Stevens and T. Gillis, ibid., E,3448(1957).** &. P. **Begue and D. Bonner, Compt. rend., 276C,1695 (1973). 2. See numerous references in J. W. Thorpe and J. Warkentin, Can. J. Chem., 5& 927** (1973). <u>6</u>. R. N. McDonald in B.S. Thygarajanled, "Mechanisms of Molecular Migrations", Wiley-Interscience, N.Y., 1971, vol. 3, p. 67. <u>7</u>. C. K. Ingold, <u>Structure and Mechanism in Organic</u>
Chemistry, Bell, London, 1953, p. 339. <u>8</u>. C. Rappe and L. Knutssen, <u>Acta Chem. Scand., 21</u>, 2205 (1967). **2. E. F. Landau and E. P. Irany, J. Org. Chem., 12, 422 (1947).** 10. A. A. Sacks and **J. G. Aston, <u>J. Am. Chem. Soc</u>., 73, 3902 (1951). 11. New compounds were characterized by nmr** spectroscopy and microanalysis and/or high resolution mass spectrometry. 12. J. Colonge and **J. C. Dubin, Compt. rend., 250, 553 (1960).** u. **A. J. Fry and A. T. Lefor, J. Org. Chem., 3, 0000 (1979). 14. E. R. Alexander, J. Am. Chem. Sot., 70, 2592 (1948). g. A. J. Fry and J. J. O'Dea, <u>J. Org. Chem</u>., <u>40</u>, 3625 (1975). <u>16</u>. A. Kirrmann and H. I. Joschek, <u>Bull. Soc. Chim</u>. <u>Fr</u>., 1681 (1963). 17. R. A. Cox and J. Warkentin, Can. J. Chem., 50, 3242 (1972). 18. D. P. Wyman and P. R. Kaufman, J. Org. Chem., 2, 1956 (1964).** 2. **J. J. Kratak, U.S. Patent No. 3,905,999 [c.n., 83, 19308OW (197511.**

(Received in USA 24 May 1979)