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Abstract 

The reaction between tertiary a-bromo ketones or aldehydes and silver tetrafluoroborate 

in ether affords a-fluorocarbonyl compounds. Neighboring group participation by the carbonyl 

oxygen is proposed to account for the products and by-products. 

Published methods1 for the synthesis of a-fluoro ketones or aldehydes (L) suffer from the 

disadvantages of requiring several steps and/or inconvenient reagents. Prompted by a recent 

report by Rosen and Menahem* concerning this problem we describe herein a convenient synthesis 

of a-fluorocarbonyl compounds, involving simply reaction of the corresponding a-bromo compound 

with silver tetrafluoroborate in ether (eq. 1). The reaction is mild and uses readily 
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available materials. On the other hand, it iS not applicable to primary (RI = R, = H) or 

chloro ketones (Table I). The observed dependence upon the degree of a-alkyl substitution per- 

mits selective exchange by one bromine of an ursynrnetrical c,a'-dibromo ketone (entry 6, 

Table I). The only by-products in the reactions proceeding to a-fluoro ketones are the 

corresponding a,@unsaturated ketones (2). Peactlons carried out in nucleophilic solvents 

(CH,OH or CH,CO,H) afford the corresponding a-methoxy or a-acetoxy ketones. 

The fact that tertiary a-bromo ketones react , while primary bromo ketones do not, indicates 

the silver ion-assisted reaction is more accurately described as an ionization than as an sN2 

process (which would proceed more rapidly with primary brom ketones). Because of the presumed 

difficulty of generating a positive charge adjacent to a carbonyl group, we believe that the 

reaction involves neighboring group participation by the carbonyl oxygen, i.e., 
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Table I. Reaction of e-Bromocarbonyl Compounds with Silver Tetrafluoroboratea 

m-Y Halide Solvent Products' 

CH3T (CH, 1 2 

Br 
Et,0 lb 07% cH3c%(cH3)2 * 

CH,COC(CH,)=CH,,g 10% 

(cH,),CHc~(CH,), (lJ)'O Et20 
Br 

(cHI),~Hc 
3 

(cH~)~(~)," 72% 

(CH,),CHCOC(CH~)~CH,(~~),'~~~%' 

BrCH2Cy(CH9)2 I3 
Br 

Et,0 BrCH,C~(CH,),," 87% 
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BrCH,CCC(CH3)=CHP," 9%c 
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(cH,),&~cH,),.'~ trace 
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(CH,),CHC~,H, 15% 

(CH,),CHC 
OL 
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G, 12%d 
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13, 21% 
(CH,)2CHCOC(CH,)2r Is 25%6 

bAC 

8 4 CH30H 

9 

10 

11 

(cH,),cHcO,CH,, 4yE 
(cH9J2 CHWCHI)2r 

6 
40% 

CH, 
(cH3),~CH(OCH3),r 20% 

OH 

(CH3)3CCCCH2Br I7 

CH,C~(CH,), I8 
Cl 

EtPO 

Et20 

No reaction 

No reaction 

(CH3)2FcH0 lg 
Cl 

Et20 No reaction 

Iz The ratio of halide to AgBF, was 1:l except where noted. Several reactions afforded some 
starting material; yields are uncorrected for this. b 4% starting material. C 2% starting 
material. d % starting material. 
6 2:1 ratio of AgBF 

e 8% starting material and 4% a-hydroxyketone also found. 
:bromide. 
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rather than formation of a free a-ketocarbonium ion. This mechanism is further supported by 

the observed by-products, e.g., unsaturated ketones 3: 

il 2 

and substances Y-10, formed -- 

(cH~)~cCH~ A9+ 

$r 
-AgBr 

from bromoaldehyde 4 in methanol: 
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(Compound g could arise by other routes, e.g., attack by methanol at the tetrahedral carbon 

of 5, with subsequent conversion of the resulting aldehyde to lo.) Epoxy ether 5 has previous- - 

ly been shown to afford 2 by reaction with methanol.3 Cyclic oxonium ions have previously been 

invoked in the reactions of a-haloketones with AgSbF,,+ substitution on a-haloketones through 

oxirane mechanisms has been proposed,' and rearrangements of a-substituted oxiranes in acidic 

media are also well-known.6 We have considered the possibility that ketenes are intermediates 

in the formation of 1 and 8, but are inclined to discount this possibility, since no diketenes 

or derived products are observed. The conversion of 2 to a-substituted carbonyl compounds 

might occur directly by attack at the a-carbon of species _ 2 (an SW2-like process) (path A) or 

by attack at the carbonyl carbon of zto formintermedrates similiar to 5, which subsequently 
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rearrange (path B). Although route B appears attractive in view of the apparent involvement of 

oxirane intermediates in the case of bromoaldehyde 4 (formation of 7-10) and literature -- 

precedents, we cannot exclude the simpler route A. 

Isolation of a-fluoroketone 12 in acetic acid (run 7) but not in methanol is interesting. - 

It suggests that substitution in the less polar and less nucleophilic solvent acetic acid (and 

presumably also in ether) involves capture of fluoride ion in a tight ion pair. This is not 

unreasonable: even with assistance by silver ion and presumably also by the neighboring car- 

bony1 group, ionization to 2 must be a marginal process, - as shown by the facts that (a) re- 

placement of bromine by chlorine causes the reaction to fail completely (runs 10 and 11) even 

though bromine is only 25-50 times better than chlorine as a leaving group,' and (b) primary 

a-bromo ketones also fail to react (runs 3 and 9). 

Experimental. Run no. 1 is representative. 1.65 g (0.01 mol) of 2-bromo-2-methyl-3-butanone 

and 1.947 g (0.01 mol) of AgBF were allowed to react overnight at room temperature in 70 ml of 

dry ether. After filtration of silver bromide , washing of the filtrate with water, drying 

(MgSO,), and careful removal of the solvent (Vigreux column), the residual liquid was separated 

by vpc (5% DEGS on Chromosorb P, 2.2 m x 6 mm column, 55OC); yields were determined by vpc. The 

products are 2-fluoro-2-methyl-3-butanone'b (87.5%) and 2-methyl-l-butenone-3' (12.5%). 
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